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ABSTRACT
Large and complex graphs representing relationships among
sets of entities are an increasingly common focus of inter-
est in data analysis—examples include social networks, Web
graphs, telecommunication networks, and biological networks.
In interactive analysis of such data a natural query is “which
entities are most important in the network relative to a par-
ticular individual or set of individuals?” We investigate the
problem of answering such queries in this paper, focusing
in particular on defining and computing the importance of
nodes in a graph relative to one or more root nodes. We
define a general framework and a number of different algo-
rithms, building on ideas from social networks, graph theory,
Markov models, and Web graph analysis. We experimen-
tally evaluate the different properties of these algorithms
on toy graphs and demonstrate how our approach can be
used to study relative importance in real-world networks
including a network of interactions among September 11th
terrorists, a network of collaborative research in biotech-
nology among companies and universities, and a network
of co-authorship relationships among computer science re-
searchers.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
graphs, Markov chains, PageRank, social networks, relative
importance

1. INTRODUCTION
Many data sets can be described in the form of graphs

or networks where nodes in the graph represent entities and
edges in the graph represent relationships between pairs of
entities. The Web can be viewed as a very large graph of this
form, where nodes represent Web pages and (directed) edges
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represent hyperlinks between pages. In social networks the
nodes typically represent individuals (or “actors”) and the
edges represent relationships among individuals such as so-
cial or professional relationships. Citation graphs can be
constructed with papers as nodes and references as directed
edges. Graph models for biological data are also of increas-
ing interest, modeling for example the interactions between
proteins.

In this context there is increasing interest in developing
algorithms and software tools for exploratory and interac-
tive analysis of graph data. While visualization techniques
such as graph-drawing can be very useful for gaining qual-
itative intuition about the structure of small graphs, there
is also a need for quantitative tools for characterizing graph
properties beyond simple lists of “who is connected to who,”
particularly as graphs become too large and complex for
manual analysis. A number of different approaches have
been developed in the search for such tools. In the research
field of social networks there is a long tradition of develop-
ing quantitative frameworks to characterize the importance
of a node in a graph relative to all other nodes. For exam-
ple, a variety of measures have been proposed by sociologists
to determine the “centrality” of a node in a social network
(Katz, 1953; Freeman, 1979; Stephenson and Zelen, 1989;
Wasserman and Faust, 1994). Statisticians have also devel-
oped general methods for quantitative graph modeling, such
as the embedding of social network data in latent Euclidean
spaces (Hoff, Raftery, and Handcock, 2002). In the area of
Web graphs, computer scientists have proposed a number of
algorithms (such as HITS (Kleinberg, 1999) and PageRank
(Brin and Page, 1998; Page et al, 1998)) for automatically
determining the “importance” of Web pages.

Virtually all of these techniques focus on global measures
of node importance in that each node is ranked relative to
all other nodes in the graph. In this paper we propose and
investigate a number of algorithms that focus on a related
but somewhat different problem, that of determining the
relative importance of nodes in a graph with respect to a
set of root nodes R. This is a very natural form of query to
be able to answer in the context of interactive exploration
of graph data.

One approach to answering such queries might be to use a
standard “global” algorithm (such as PageRank) to rank all
nodes in a subgraph surrounding the root nodes R of interest
(e.g., all nodes within some specific path-length of the root
nodes). The problem with such an approach is that the
root nodes are not given any preferential treatment in the
resulting ranking—in effect, one is ranking nodes in the local
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Figure 1: Coauthorship network centered around
Tom Mitchell of CMU.

subgraph around R rather than ranking them relative to R.
There are some other limitations of the “global” approach
in this context which we do not elaborate on here and we do
not pursue the “global ranking on local subgraphs” approach
further in this paper.

Figure 1 shows an example of a subgraph based on co-
authorship patterns among computer science researchers.
Here the root set consists of the single author Tom Mitchell,
a well-known researcher in machine learning. The problem is
to rank all other nodes in the graph given that Tom Mitchell
is defined as the root set. The root set R can be thought of
as representing the data analyst’s prior knowledge or bias in
terms of which nodes are considered important in the graph.
In effect we are interested in answering a form of conditional
query: given that the nodes in R are assumed to be impor-
tant, rank the other nodes in the graph. In the limit, as the
set of root nodes encompasses the entire graph, the relative
importance approaches the global importance.

The primary novel contribution of this paper is a new
framework and class of techniques for measuring relative im-
portance in graphs. We introduce newly defined measures of
node importance (such as Markov centrality) and extensions
and generalizations of techniques previously proposed. We
also illustrate how our proposed techniques can be applied
to a broader set of graphs than is typical in the research lit-
erature on network analysis (where typically only one type
of graph, such as social networks or Web graphs, is the focus
of a given study.)

The paper proceeds as follows. In Section 2 we briefly
define our general notation followed by a discussion of re-
lated work in Section 3. A precise definition of the problem
of determining relative importance in a graph then follows
in Section 4. Section 5 introduces a general class of algo-
rithms for relative importance based on weighted paths and
motivated by graph-theoretic ideas. Section 6 proposes a dif-
ferent class of algorithms for relative importance based on
Markov chain models, including a technique based on mean-
first passage times, extensions of the PageRank and HITS

algorithms, as well as a technique based on k-step Markov
Chain arrival probabilities. Section 7 discusses experimental
results on small toy graphs to provide some intuition of how
these algorithms operate. Section 8 discusses experimental
results on three real-world networks, including a network of
September 11th 2001 terrorists, a network describing collab-
orative partnerships among biotechnology companies, and a
large network consisting of computer science researchers and
their co-author relations. Correlation of ranks from differ-
ent algorithms are analyzed in Section 9 and conclusions are
presented in Section 10.

2. NOTATION
A directed graph, or digraph, G = (V, E) is comprised of

two sets, the set of nodes V and the set of edges E. We
define each edge e to be an ordered pair of nodes (u, v)
representing a directed connection from u to v. The graphs
in this paper are assumed to be directed, unweighted and
simple, i.e., without self-loops or parallel edges. We treat
undirected graphs as a special case of directed graphs where
for each edge from u to v there exists a corresponding edge
e′ = (v, u). A walk from vertex u to vertex v is a sequence of
edges (u, u1), (u1, u2), . . . , (uk, v). For brevity we also write
this as u − u1 − u2 − . . . − uk − v where u is the start node
and v is the terminal node.

A walk is a path if no nodes are repeated in the sequence.
Two (or more) paths are node-disjoint if they have no com-
mon intermediate nodes. We define the k-short paths as the
set of all paths less than some length k. We will use P(u, v)
to denote a particular set of paths between vertices u and v.
For any collection of elements Z, we define |Z| as the num-
ber of elements in that collection, e.g., |V | is the number of
vertices in V . We define Sout(u) as the set of distinct out-
going edges emanating from node u. dout(u) = |Sout(u)|
is the out-degree. Similarly, Sin(u) is the set of incoming
edges connecting to node u, and din(u) = |Sin(u)| is the
in-degree.

3. RELATED WORK
Although no general framework or methodology has pre-

viously been proposed for ranking nodes in a graph rela-
tive to a set of root nodes (to our knowledge), the problem
of identifying nodes in a network according to some oper-
ational notion of “importance” has been an active area of
research in many different fields, primarily in the study of so-
cial networks, Web graph analysis, and bibliometrics. Here
we briefly review work that most closely relates to ideas dis-
cussed in this paper.

Freeman (1979) described a set of measures for computing
the global importance of each actor in a network where im-
portance is defined in terms of how “central” the actor is in
a network. Freeman’s work consolidated much of the prior
literature along similar lines in social networks, dating as far
back as the 1930s. He proposed three measures of centrality,
one based on degree, and the other two based on measuring
shortest paths to quantify the effect of one node on another.
In Section 5 we will discuss the advantages and limitations
of shortest paths in computing relative importance.

The idea of using weighted paths to approximate global
measures of importance has been used for a long time in
the social networks literature although not in the general-
ized form we describe in this paper. Katz (1953) described

267



www.manaraa.com

a measure of the standing of an actor, in terms of weighted
paths. This is close to a special case of a class of algorithms
we propose where the set P , defined later in the paper, is
the set of all paths between two nodes. Stephenson and
Zelen (1989) defined a similar approach called Information
Centrality, which also used the set of all paths between two
nodes weighted by an information-based weighting for each
path that is derived from the inverse of its length. In addi-
tion, much work has been carried out in social networks and
bibliometrics to define importance in terms of the principal
eigenvector of a matrix derived from the underlying graph.
Much of this work can be seen as precursors to eigenvector
methods proposed recently in the Web ranking literature.

The two seminal contributions to ranking nodes in a Web
graph are the PageRank algorithm of Brin and Page (1998),
and the HITS algorithm of Kleinberg (1999). Research in
this area has since been very active in developing a variety of
extensions and new algorithms. Lempel and Moran (2000)
described a variation of HITS called SALSA that can be
understood as a random walk on a bipartite graph of hubs.
Borodin et al. (2001) described a number of algorithms for
ranking nodes in a Web graph, including extensions of both
SALSA and HITS. Their approximation algorithms based
on weighted paths can be viewed as closely related to the
class of weighted path algorithms introduced later in this
paper.

Almost all of this prior work, from social networks, bib-
liometrics, and Web graph analysis, is either implicitly or
explicitly focused on global rankings of nodes. There are
two notable exceptions. The first is the work of Haveliwala
(2002) and Jeh and Widom (2002), who developed personal-
ized variations of PageRank, extending earlier ideas of Page
et al. (1998). Their goals are similar to ours (but for the
specific context of PageRank and Web pages), namely, to
bias the standard PageRank rankings towards a set of prior
topics (or root set). In Section 6 we discuss this approach
in more detail and we include it as one of the algorithms we
evaluate in our experimental results later in the paper. The
second exception to global rankings is the work of Chang,
Cohn and McCallum (2000) that describes a personalized
variant of HITS (different than the personalized version of
HITS we desribe in this paper) based on iteratively alternat-
ing between running the original version of HITS and then
performing gradient ascent on each element of the adjacency
matrix to update the weights with respect to the preferred
nodes. Apart from this work, there has been relatively little
attention paid to the problem of computing importance in
graphs relative to a subset of nodes in the graph. This paper
focuses directly on the definition and computation of relative
importance for graph data. We propose a general family of
techniques for computing relative importance and evaluate
and compare these techniques with existing approaches such
as personalized PageRank.

4. PROBLEM FORMULATION
We now describe four successive problem formulations,

each building upon the next, that defines our approach to
ranking nodes in an unweighted digraph G(V, E):

1. Given G and r and t, where {r, t} ⊂ G, compute the
“importance”1 of t with respect to the root node r.

1Depending on the specific entities and relationships that

We denote this as I(t|r), in general a non-negative
quantity.

2. Given G and node r ∈ G, rank all vertices in T (G), T ⊆
V , with respect to r. To do this we compute I(t|r) for
all t ∈ T and then sort the values so that the largest
values can be said to have highest importance and con-
versely for the smallest values.

3. Given G, a set of nodes T (G) to rank, and a set of root
nodes R(G) where R ⊆ V , rank all vertices in T with
respect to R. This is the same as case 2 except instead
of computing I(t|r) for a single node r, we compute
I(t|R) as a function of all nodes r ∈ R, where I(t|R) is
generally defined as a function of the set of individual
rankings {I(t|r) : r ∈ R}. For example, we can use the
average importance relative to the set R:

I(t|R) =
1

|R|
�
r∈R

I(t|r). (1)

Instead of averaging the individual I(t|r) terms we
could (for example) define I(t|R) = min{I(t|r) : r ∈
R}, which requires that a node t have high importance
relative to all nodes in R in order to be ranked highly
overall. In this paper we will use the “average” (as in
Equation 1 above) for I(t|R) in most of our examples,
but in general other functional forms can be used when
appropriate.

4. Given G, rank all nodes. This is a special case of the
last step where R = T = V .

We restrict our attention in this paper to ranking algo-
rithms that lie within this general framework.

5. COMPUTINGRELATIVEIMPORTANCE
USING WEIGHTED PATHS

We begin by describing a class of algorithms that use ex-
plicit definitions of relative importance for I(t|r) based on
various graph-theoretic notions of distance. The two main
properties we model using this approach are: 1) two nodes
are related according to the paths that connect them and 2)
the longer a path is, the less importance is conferred along
that path. To achieve these two ends we define I(t|r) as
follows:

I(t|r) =

|P(r,t)|�
i=1

λ−|pi| (2)

where P(r, t) is a set of paths from r to t, pi is the ith
path in P , and λ is a scalar coefficient, 1 ≤ λ ≤ ∞, that
determines how much importance is conferred from r to t.
In this model, the amount of importance that is conferred
along a path decays exponentially with path length, a real-
istic assumption for most real-world networks. Borodin et
al. (2001) proposed what can be seen as a special case of
this formulation with λ = 2 and their choice for P involv-
ing choosing paths that can be constructed by alternating

the nodes and edges represent, more nuanced words may
be appropriate to describe what is being calculated, e.g.,
authority, prestige, energy, mass, etc. However, for the pur-
poses of discussing a broad framework that can encompass
multiple definitions of I(t|s) we purposely use the less spe-
cific term “importance” throughout the paper.
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Figure 2: Two simple toy graphs.

between moving forward along the out-links and backward
along the in-links starting at a given node. In the results in
this paper we will also use λ = 2.

Figure 2 shows two different graphs with terminal vertices
R and T , and several paths connecting them along vertices
A, B, C, D, E and F in each graph. Two examples of possible
choices of P are P1(R,T ) = {R − A − B − C − T, R − A −
F −T,R−D−E−F −T} and P2(R, T ) = {R−A−F −T}.
How we wish to define importance will drive our choice of
P . To see that this is the case, we examine several plausible
candidates for P and analyze their strengths and weaknesses
using the examples in Figure 2.

5.1 Shortest Paths
Shortest paths, often called geodesics, can provide useful

measures of importance if it is assumed that all the ver-
tices that do not lie on the geodesics but yet are reachable
from both R and T play a negligible role. For example,
if one imagines a transportation network with R trying to
transport “cargo” to T using as few intermediate vertices as
possible, using shortest paths would be well suited to model
the set of paths that best characterize the importance that
R confers to T . But in many types of graphs, such as Web
graphs or citation graphs, using shortest paths can yield
poor approximations. For example, Figure 2a shows a situ-
ation where an assessment based on the two shortest paths
between R and T , {R − C − T, R − D − T} fails to cap-
ture much of the connectivity between R and T , by ignoring
the importance of vertices A, B, E, and F . These vertices
could in principle add more importance to T , relative to R,
than if they did not exist. Despite these limitations, short-
est paths are an important measure that is widely used to
measure pair-wise relations in a graph. For example, many
of the centrality measures in social networks such as “close-
ness” and “betweenness” (Freeman, 1979; Wasserman and
Faust, 1994) use shortest paths to measure how two nodes
are related.

5.2 K-Short Paths
Using K-short paths as a choice for P , for a prespeci-

fied value K and assuming K is large enough, addresses the
problem we just described for shortest paths where there are
often longer paths than the very shortest path that are im-
portant to take into account. For example in Figure 2a, the
set of 3-short paths would be {R−C−T, R−D−T, R−A−
B−T, R−C−B−T, R−A−C−T, R−E−F −T, R−E−
D − T, R − D − F − T}. Although K-short paths, even for

small K, can succeed in detecting the important paths that
connect R to T , they have one major drawback. They do
not take into account “capacity constraints” that may ex-
ist on nodes or edges. Because nodes and edges may occur
multiple times on different paths, they can be seen as hav-
ing infinite capacity and as such can be used to double-count
the importance that is conferred on a node. For networks
where the notion of a capacity constraint or bottleneck has
no meaning, this might be acceptable. However, for many
real world networks this is an unrealistic assumption.

5.3 K-Short Node-Disjoint Paths
K-short node-disjoint paths are sets of K-short paths that

have neither edges nor nodes in common, i.e., no node or
edge can be used more than once in the set of multiple paths
from R to T . In Figure 2b a set of 3-short node-disjoint
paths is {R−C−T,R−D−T,R−A−B−T,R−E−F−T}.
For our experimental evaluation of different graphs, we use
sets of K-short node-disjoint paths as our choice for the set
of paths P in the definition of I(u|v) using weighted paths.
This specific choice implicitly enforces capacity constraints
on nodes and edges (no node or edge can be double-counted
in the definition of relative importance). We chose this def-
inition of P as we found it gives quite good approximations
of the relative importance of nodes based, in general, on a
relatively small set of paths in the neighborhood of radius
K from the root nodes. In addition, we chose it in order
to contrast it with the Markov chain methods described in
the next section where, in its unconstrained form, the con-
nectivity of the entire graph, by virtue of traversing the set
of all possible walks, is used to compute the importance of
a node. The use of weighted K-short node-disjoint paths
above is in contrast motivated more by a “mass flow” anal-
ogy where importance can “flow” along disjoint paths in the
graph from R to T .

To compute importance using K-short node-disjoint paths,
we use a heuristic breadth-first search algorithm to find a
good set of paths P . Using paths of length less than or equal
to K is motivated by the fact that for λ = 2 (for example),
the weights die off rather quickly as a function of K, and
one can generally get a good approximation of I(u|v) with
relatively small integer values of K, avoiding the computa-
tional expense of exploring longer paths that contribute very
little to I(u|v). In the general case, the choice of the path
set P will depend on what aspect of “importance” the data
analyst is interested in.

6. COMPUTINGRELATIVEIMPORTANCE
USING MARKOV CHAINS

In the previous section we used graph-theoretic notions of
distance defined explicitly on the graph as a general frame-
work for estimating relative importance. A conceptually
different approach is to view the graph as representing a
stochastic process, more specifically, a first-order Markov
chain. Intuitively one can imagine that there is a single
“token” traversing the graph in a stochastic manner for an
infinitely long time, where the next node that the token
moves to is a stochastic function of properties of the current
node. The fraction of time that the token spends at any
single node (the stationary distribution of the correspond-
ing Markov chain, under appropriate assumptions) can then
be interpreted as being proportional to an estimate of the
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global importance or importance of this node relative to all
other nodes in the graph.

Perhaps the most well-known and successful example of
this general idea is the PageRank algorithm (Brin and Page,
1998; Page et al., 1998). The Markov analogy in the PageR-
ank algorithm is quite clear and has been well-described in
the literature, namely a “random surfer” surfing the Web
based on a suitably-defined transition matrix. For other
types of (non-Web) graphs, the Markov analogy is not quite
as obvious. For example, in a graph where nodes are au-
thors and edges correspond to co-authorship, a loose anal-
ogy would be that there is a single publication (“the book of
knowledge”) that is being circulated ad infinitum (in Markov
fashion) through the entire author graph. The stationary
distribution (or importance) could be thought of as the frac-
tion of time that each author gets to contribute to the book
of knowledge as it passes among authors. In more general
social networks, where nodes are human actors and edges
represent specific types of interactions such as friendship,
institutional membership, etc., the Markov analogy is fur-
ther strained, but one can imagine that there is a finite
amount of some currency that is being circulated through
the entire graph. Based on the success of PageRank (and
similar) algorithms, we will take it at face-value that this
type of Markov-chain analogy can lead to useful definitions
for importance across a much broader set of graphs than just
Web graphs. Thus, our focus in this paper in the context of
Markov-based algorithms is to define and evaluate different
techniques for calculating the relative importance of t rela-
tive to r, in contrast to the more usual global importance
that is calculated by algorithms such as PageRank.

In what follows below we assume that the graph can be
converted into an equivalent Markov chain—specifically, the
probability of transitioning to node i from node j is defined
(unless stated otherwise) as p(i|j) = 1/dout(j) for nodes
i that have an edge from j to i, and 0 otherwise. Other
choices for transition probabilities could also be used in the
algorithms discussed below if information is available on the
relative weights of different edges in the network.

6.1 Markov Centrality
The first approach we examine is the inverse of the mean

first-passage time in the Markov chain. The mean first pas-
sage time mrt from r to t is defined as the expected number
of steps taken until the first arrival at node t starting at
node r (Kemeny and Snell, 1976):

mrt =

∞�
n=1

nf
(n)
rt (3)

where n denotes the number of steps taken, and f
(n)
rt de-

notes the probability that the chain first returns to state t
in exactly n steps. A useful property of using mean first
passage times, besides having a natural Markov interpreta-
tion, is that one can directly compute a mean first passage
matrix giving the mean first passage times for all pairs of
nodes. The mean first passage matrix is given by

M = (I− Z + EZdg)D (4)

where I is the identity matrix, E is a matrix containing all
ones, and D is the diagonal matrix with elements dvv = 1

π(v)

where π(v) is the stationary distribution (in the Markov
chain) of node v. Z is known as the fundamental matrix

and Zdg agrees with Z on the diagonal but is 0 everywhere
else. The fundamental matrix is defined as

Z =
�
I −A − e�T

�−1

(5)

where A is the Markov transition probability matrix, e is a
column vector of all ones, and � is a column vector of the
stationary probabilities for the Markov chain.

In the results reported in this paper we use the inverse of
the average mean first passage times for defining the impor-
tance of node t given a root set R, i.e.,

I(t|R) =
1

1
|R|
�

r∈R mrt

If we set R = T = V we get a global “objective” ranking
function, yielding a ranking algorithm where nodes that are
more “central” in a network, i.e., closer to the center of
mass, have higher ranking than those that are less central.
We can see that this is the case by observing that nodes
that are more central will take less time to reach on average
from all other nodes. As |R| gets smaller with respect to
|V |, the rankings will be more biased towards the nodes
in our root set yet still preferring nodes that are “central”
in the network. We refer to this as “Markov centrality” a
concept that reflects the notion of how central a node t is
in a network relative to a particular node r, analogous to
centrality measures developed by sociologists for analyzing
social networks (Katz, 1953; Freeman, 1979; Stephenson and
Zelen, 1989; Wasserman and Faust, 1994).

Finally, observe that a disadvantage of this methodology is
that the computational complexity of a direct method scales
as O(|V |3) since we must invert a matrix of size |V | × |V |
to solve Equation 5, and the space complexity is O(|V |2).
Consequently we do not apply the method to the two larger
data sets in our experimental results section. It may be
possible to reduce the complexity by taking advantage of
both the sparsity of A and the size of R (since we only need
first-passage times relative to the set R, not relative to all
nodes).

6.2 PageRank with Priors
Haveliwala (2002) and Jeh and Widom (2002) show that

the PageRank algorithm can be extended to generate “per-
sonalized” ranks. Borrowing from their work, we demon-
strate how PageRank can be retrofitted into our frame-
work. We define a vector pR of prior probabilities pR =
{p1, . . . , p|V |} such that the probabilities sum to 1 and where
pv denotes the relative importance (or “prior bias”) we at-
tach to node v. In this paper we use pv = 1

|R| for v ∈ R,

pv = 0 otherwise, i.e., all nodes in the root set have equal
prior probability. In addition to pR, we also define a “back
probability” β, 0 ≤ β ≤ 1 which determines how often we
jump back to the set of root nodes in R. Integrating these
two extensions into the original formula for PageRank, we
get iterative stationary probability (or rank) equations of
the form:

π(v)(i+1) = (1 − β)

�
�

din(v)�
u=1

p(v|u)π(i)(u)

�
�+ βpv. (6)

We use the resulting “ranks”, biased towards the set R, as
our definition of relative importance, i.e., I(v|R) = π(v)
after convergence.
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Intuitively this equation represents a Markov chain for a
random surfer who transitions “back” to the root set R with
probability β at each time-step. This is similar in spirit to
the use of weighted paths as follows: we are evaluating the
probability of landing on a node in the modified Markov
chain where a random graph surfer starts in the set R (with
appropriate prior probabilities) and executes a random walk
that ends stochastically with probability β (at which point
the process restarts). This process defines an (infinite) set
of walks of variable length starting at the root set (in fact
they will follow a geometric distribution with mean 1

β
). The

“rank” equation above estimates the relative probability of
landing on any particular node during this set of walks.
The computational complexity is the same as that of the
standard PageRank algorithm, namely sparse matrix-vector
multiplications to implement each iteration in the recursion
defined by Equation 6.

6.3 HITS with Priors
We can also extend the HITS algorithm (Kleinberg, 1999)

to fit into our proposed framework using logic similar in
spirit to the preceding discussion. To do so we borrow the
same extensions of defining a vector pR = {p1, . . . , p|V |} of
prior probabilities and a “back probability” β yielding:

a(i+1)(v) = (1 − β)
��din(v)

u=1
h(t)(u)

H(i)

�
+ βpv (7)

h(i+1)(v) = (1 − β)
��dout(v)

u=1
a(t)(u)

A(i)

�
+ βpv (8)

where din(v) and dout(v) are the indegree and outdegree of
v, respectively, and where H(t) and A(t) are defined as:

H(i) =
�|V |

v=1

�din(v)
u=1 h(i)(u) (9)

A(i) =
�|V |

v=1

�dout(v)
u=1 a(i)(u) (10)

We call this extension “HITS with Priors” and its intu-
ition is as follows: let there be a random surfer who starts
from a randomly chosen page in G and visits a new page at
every time step. At each time step, the surfer tosses a coin
with bias β. If the coin lands heads and it is an even time
step, then the surfer follows a random in-link. If the coin
lands heads and it is an odd time step, then the surfer follows
a random out-link. If the coin lands tails, then the surfer
jumps to a page in R chosen according to the distribution
pR. As before, this process defines a random walk and the
resulting stationary distribution of each page is then used to
define I(t|R). For the purposes of this discussion we assume
R is the same set for both hubs and authorities although
one could make the model more complicated by having two
sets RA and RH , one for authorities and one for hubs. At
even time steps when the coin lands tails, the random surfer
would jump to a page chosen randomly in RH , at odd time
steps the surfer would jump to a page chosen randomly in
RH . However, we will not consider this model further in
this paper. As with PageRank with Priors, as β approaches
1, the rankings are more biased towards R.

6.4 The K-Step Markov Approach
The “back probability” interpretation for personalized

PageRank and HITS also suggests a slightly different algo-
rithm, one that also generates random walks starting from
R, but where now the walks are of fixed-length K (whereas
PageRank and HITS with Priors in effect generate walks
where the length is stochastic). Now we are computing the

I

D F

E

J

C

B

A H G

Figure 3: An undirected toy graph.

relative probability that the system will spend time at any
particular node, given that it starts in R and ends after
K steps. This is an estimate of the transient distribution of
states in the Markov chain, starting from R: as K gets larger
we will (under appropriate assumptions on the Markov tran-
sition matrix A) converge to the steady-state distribution
used by PageRank. Thus, the value of K controls the rela-
tive tradeoff between a distribution “biased” towards R and
the steady-state distribution which is independent of where
the Markov process started. We call this algorithm K-Step
Markov or KSMarkov for short. In this case, I(t|R) can be
computed using the equation:

I(t|R) =
	
ApR + A2pR . . . AKpR



t

(11)

where A is the transition probability matrix of size n×n, pR

is an n × 1 vector of initial probabilities for the root set R,
and I(t|R) is the t-th entry in this sum vector. The compu-
tational complexity for sparse graphs is approximately that
of sparse matrix-matrix multiplication performed K times.

7. EVALUATION ON SIMULATED DATA
Given that these algorithms are intended as exploratory

data analysis tools, it is not clear that there are well-defined
quantitative metrics for evaluating the quality of one algo-
rithm’s rankings relative to another. With this in mind, the
interpretation of the ranking results for a particular graph
will depend on the goals of the data analyst who requests the
ranking. In a similar vein, the choices for parameters such
as β and K are inherently subjective and different values
for these parameters reflect different biases in the ranking
process. Despite these general reservations, in this section
and the next we examine the top-10 rankings of the algo-
rithms for a variety of graphs and root sets with the goal of
obtaining a better understanding of what kinds of rankings
are produced by each algorithm as well as illustrating how
the methods work on both real and simulated data.

We compare five different ranking algorithms described in
the previous sections: weighted K-short node-disjoint paths
(WKPaths), Markov Centrality (MarkovC), PageRank with
Priors (PRankP), HITS with Priors (HITSP), and K-step
Markov (KSMarkov), with abbreviations for each in paren-
theses. For both PRankP and HITSP, we use β = 0.3. For
both WKPaths and KSMarkov we use K = 6. For undi-
rected graphs the importance and hubs scores are the same
so there is no need to display both scores in this case.

We first consider a simple undirected graph with ten nodes,
each with degree three, and fifteen edges as shown in Figure
3. In the resulting ranking PRankP, HITSP, and KSMarkov
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Figure 4: A directed toy graph.

are perfectly correlated with a ranking based on degree, and
each node gets the same score. For the graph in Figure 3,
these algorithms do not discern important structural differ-
ences between nodes. All three algorithms give the same
rank to J (the central hub connecting the three sub graphs
A-B-C, D-E-F, and G-H-I) as they do to each of the rest
of the nodes. The other two algorithms can distinguish be-
tween J and the others. With MarkovC, the central hub J
is ranked highest with a normalized ranking score of 0.112
while all other nodes get the same score of 0.098. This is
consistent with the earlier observation that this algorithm
prefers nodes that are central in the graph. WKPaths makes
a further distinction between C,E, and H, the middle ring,
and the other nodes on the outside ring A,B,D,F,G,I. In this
case, C,E,H are ranked equally high and above J because of
the fact that there are more higher weighted node-disjoint
paths, in general, to C,E, and H than there are to J.

Figure 4 shows a directed graph version of the previous
graph (Figure 3) where relationships between nodes are now
more complicated. For example, the shortest path from A
to B which used to be A-B is now A-C-J-H-I-B. and the
shortest path from D to J which used to be D-E-J is now
D-A-C-J. In addition, the in-degrees and out-degrees are no
longer the same for all nodes. As a consequence, hubs and
importance scores for HITSP will no longer be the same and
so both scores are displayed.

Consider an example with more than one root node. Table
1 shows the results when both A and F are selected as root
nodes for the directed graph in Figure 4. In this example,
which typifies the kinds of complexities we find in real world
network data, the algorithms produce more diverse results
in terms of ranking which nodes are more important. Given
that each algorithm has a different understanding of what
“importance” means this is to be expected. HITSP, for ex-
ample, gives results that are intuitive when it is understood
that nodes that are closer to the root nodes should generally
be ranked higher, that nodes which send out edges to other
important nodes should be ranked higher as hubs, while
nodes which receive edges from important nodes should be
ranked higher as authorities. We can see this is the case
by observing, for example, that F is ranked higher as a hub
than A (and all other nodes) since it sends out two edges
(while A only sends out one), one of which is G which is part
of the highest interconnected subgraph of nodes G,H,I,J. Of
the nodes that aren’t root nodes, D is ranked highest as a
hub since it is the only node sending out edges to both root
nodes. We can see also how MarkovC gives roughly intu-
itive results by noticing that it ranks highest the nodes that

are most central in the graph while still being close to the
root nodes. Finally, we observe that both KSMarkov and
MarkovC rank the root nodes near the bottom of the rank-
ings. This might seem rather bizarre if one expects the root
nodes by default to be near the top by virtue of the fact that
rankings are relative to them. However, this need not be the
case if one thinks of relative importance as a sphere of influ-
ence where for PRankP, HITSP, and WKPaths the sphere’s
density diminishes exponentially away from the root nodes
whereas for MarkovC and KSMarkov the sphere is centered
at the root nodes but the sphere’s density is much more uni-
form. For MarkovC and KSMarkov the root nodes will be
ranked highest only if they are the most important nodes in
their vicinity. In the case of KSMarkov, H is ranked highest
because it is in the center of the densest subgraph G,H,I,J
and so is easiest to reach on average for a walk of 6 steps
away from the root nodes.

8. EVALUATION ON REAL-WORLD DATA
We use three real world graph data sets to illustrate the

applicability of our algorithms to large, complex graphs: a
graph of the September 11th terrorist network, a network of
biotechnology collaborations, and a coauthorship network
constructed from the Citeseer database of scientific litera-
ture (Lawrence, Giles, and Bollacker, 1999).

8.1 September 11th Terrorist Network
The terrorist network graph consists of 63 nodes (terror-

ists) and 308 edges representing known interactions between
terrorists (Krebs, 2001). This graph includes the 19 Septem-
ber 11th hijackers and their associates.

Table 4 show the top ten authorities (shortened last names
only) relative to two associates of the September 11th hijack-
ers that were known to be part of European Al Qaeda ter-
rorist cells: Essid Sami Ben Khemais who is known to have
been part of an Italian cell and Djamal Beghal who is known
to have been a leader in the Al Qaeda European network.
The results are interesting insofar as they show how each
of the different algorithms are able to measure different as-
pects of the terrorists’ roles in Al Qaeda and the September
11th hijacking. In all of the algorithms except MarkovC, we
can discern many of the important terrorists, for example,
Tarek Maaroufi, Kamel Daoudi, and Zacarias Moussaoui,
that were known to have had strong ties with Khemais and
Beghal as well as playing a major part in European opera-
tions of Al Qaeda. The fact that KSMarkov agrees strongly
with PRankP, HITSP and WKPaths in ranking the root
nodes highest indicates that Khemais and Beghal were in-
deed important players in the Al Qaeda network in general.
Furthermore, these four algorithms are able to identify ter-
rorists that fall on critical paths between the two root nodes
and who themselves were embedded in locally cohesive net-
works, including Tarek Maaroufi and Abu Qatada. Finally,
MarkovC identifies the terrorists who were very central over-
all in the network, for example Mohammed Atta who it
ranks highest and is known to have been the leader of the
hijackers, while still being within a few points of contact
from the root nodes.

8.2 Biotech Collaboration Network
The biotech network data set consists of 2700 nodes (biotech

firms and their collaborators) and 8690 edges (collabora-
tions). The biotech firms encompass 482 international pub-
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Table 1: Importance rankings for the nodes in Figure 3 with respect to nodes A and F.

Rank PRankP HITSPa HITSPh WKPaths MarkovC KSMarkov
1 F 0.200 A 0.252 F 0.225 F 0.206 J 0.180 H .146
2 A 0.167 F 0.241 A 0.186 A 0.206 C 0.133 G .142
3 C 0.122 G 0.128 D 0.162 E 0.116 G 0.130 E .142
4 E 0.107 C 0.110 B 0.119 C 0.108 H 0.129 J .140
5 J 0.105 E 0.099 E 0.090 G 0.095 E 0.111 C .120
6 G 0.103 H 0.052 I 0.067 J 0.068 I 0.101 I .098
7 H 0.086 D 0.032 H 0.061 H 0.066 F 0.069 F .087
8 I 0.056 I 0.032 J 0.050 I 0.052 D 0.051 D .061
9 D 0.037 J 0.025 G 0.028 D 0.052 A 0.047 A .034
10 B 0.013 B 0.024 C 0.008 B 0.026 B 0.044 B .024

Table 2: Importance rankings for the terrorist network with respect to nodes Khemais and Beghal.

Rank PRankP HITSP WKPaths MarkovC KSMarkov
1: Khemais 0.221 Khemais 0.173 Beghal 0.045 Atta 0.063 Khemais 0.115
2: Beghal 0.218 Beghal 0.166 Khemais 0.045 Al-Shehhi 0.041 Beghal 0.108
3: Moussaoui 0.044 Atta 0.038 Moussaoui 0.045 al-Shibh 0.037 Moussaoui 0.065
4: Maaroufi 0.039 Moussaoui 0.029 Maaroufi 0.044 Moussaoui 0.036 Maaroufi 0.059
5: Qatada 0.036 Maaroufi 0.026 Bensakhria 0.037 Jarrah 0.030 Qatada 0.052
6: Daoudi 0.035 Qatada 0.025 Daoudi 0.037 Hanjour 0.028 Daoudi 0.049
7: Courtaillier 0.032 Bensakhria 0.023 Qatada 0.036 Al-Omari 0.026 Bensakhria 0.045
8: Bensakhria 0.031 Daoudi 0.023 Walid 0.031 Khemais 0.025 Courtaillier 0.045
9: Walid 0.030 Courtaillier 0.022 Courtaillier 0.031 Qatada 0.025 Walid 0.040
10: Khammoun 0.025 Khammoun 0.021 Khammoun 0.029 Bahaji 0.024 Khammoun 0.034

licly and privately held companies involved in human thera-
peutic and diagnostic applications of biotechnology (Powell
et al., 2002). The data set covers collaborations over the 12-
year period, 1988-99. Collaborations include such relation-
ships as finance, R&D, and commercial ventures. A portion
of the network is shown in Figure 5.

We examine the top relative authorities in the biotech col-
laboration network relative to two British universities that
are known to have expertise in biotechnology: Cambridge
University and Oxford University. Table 5 shows the re-
sults (names are abbreviated) of ranking the top ten au-
thorities relative to them. Perhaps not surprisingly in this
case, the authorities that are selected tend to be British
companies, some of them located in the same cities as the
universities themselves. This seems reasonable given the
assumption that universities tend more often than not to
engage in research with companies and other institutions
located near them geographically. Nevertheless, given that
this data set includes many different types of collaborations,
not just commercial partnerships, it is interesting that geo-
graphic location so strongly influences the results. For exam-
ple, British Biotech, Cantab Pharmaceuticals now acquired
by Xenova, Oxford GlycoSciences, and Glaxo Pharmaceuti-
cals are all British biotech companies. (It is an interesting
side note that one of the non-British companies, Cortecs In-
ternational, has since this data was collected been bought
out by British pharmaceutical company Provalis). Finally,
it should also not be surprising that major players in the
biotech arena, of which NIH is by far the largest (in terms
of funding), show up in these results as well.

8.3 The CITESEER Co-Authorship Network
The CiteSeer data set we used consists of 387,703 papers

that were published between 1991 and 2002. From this data

set we extracted a co-authorship graph where the nodes are
authors in the data set and the edges are all of the pair-wise
co-authorships between authors. An edge exists between two
authors if they have been co-authors on 1 or more papers
together.

Table 7 shows the most important nodes relative to Tom
Mitchell (Figure 1). The rankings from different algorithms
correlate strongly, due in large part to the strong intercon-
nected network involving Tom Mitchell, Sebastian Thrun,
Andrew McCallum, Thorsten Joachims, etc. All of these
authors were in the Computer Science department at CMU
for several years during the time this data set was collected
and most of them have written papers with one another
numerous times. So the authorities we see here are highly
influenced by the fact that there was a strong interconnected
community of machine learning researchers in the same lo-
cation.

Table 5 shows the top authorities relative to a different
root node set consisting of Sergey Brin and Larry Page,
who developed the PageRank algorithm and Jon Kleinberg
who developed HITS. As with previous experiments, the re-
sults for each algorithm correlate quite strongly. For exam-
ple, all four algorithms seem to suggest that relative to the
three root nodes, Rajeev Motwani, Prabhakar Raghavan,
Jeff Ullman and Craig Silverstein are the most important.
These results are intuitive for several reasons: 1) Ullman is
a well known researcher in the field of databases and has
coauthored papers with Brin, Motwani and Silverstein, 2)
Silverstein and Motwani have also coauthored papers with
Brin and Page, 3) Motwani and Raghavan are close collab-
orators having, among other things, written the well known
book Randomized Algorithms together, and 4) Motwani and
Raghavan have also coauthored several papers with Klein-
berg on Web graph analysis and thus can be seen as a key
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Figure 5: A portion of the biotechnology network.

Table 3: Importance rankings for the biotechnology network with respect to nodes Cambridge University
and Oxford University.

Rank PRankP HITSP WKPaths KSMarkov
1: CambridgeU 0.1537 OxfordU 0.1510 OxfordU 0.0020 Cortecs 0.0616
2: OxfordU 0.1531 CambridgeU 0.1510 CambridgeU 0.0020 Cantab 0.0559
3: Cortecs 0.0480 Metra 0.0088 OxfordGlyco 0.0016 BritishBio 0.0550
4: Cantab 0.0453 BritishBio 0.0084 Cantab 0.0016 Metra 0.0532
5: BritishBio 0.0451 OraVax 0.0080 OraVax 0.0016 OraVax 0.0510
6: Metra 0.0443 Cantab 0.0075 BritishBio 0.0016 OxfordGlyco 0.0428
7: OraVax 0.0432 OxfordGlyco 0.0072 Glaxo 0.0015 Pfizer 0.0069
8: OxfordGlyco 0.0395 Cortecs 0.0072 Metra 0.0015 Glaxo 0.0066
9: Pfizer 0.0046 NIH 0.0068 SmithKline 0.0014 Incyte 0.0066
10: Glaxo 0.0044 Chiron 0.0055 Pfizer 0.0014 CambridgeU 0.0056

Table 6: Correlations of top-10 rankings in Table 2.

PRankP HITSP WKPaths MarkovC KSMarkov
PRankP 1 0.80 0.87 0.47 0.98
HITSP 0.80 1 0.76 0.52 0.82

WKPaths 0.87 0.76 1 0.44 0.89
MarkovC 0.47 0.52 0.44 1 0.43
KSMarkov 0.98 0.82 0.89 0.43 1

bridge connecting Brin and Page to Kleinberg.

9. CORRELATIONS OF RANKED LISTS
We used the K-Min (minimizing Kendall distance) met-

ric of Fagin et al. (2003) to measure distances between
the top-10 lists produced by the different relative impor-
tance algorithms. We normalize the K-min metric so that
K-min(s1, s2) = 1 when both lists are identical and K-
min(s1, s2) = 0 when one list is the reverse ordering of the
other (most dissimilar). Table 6 shows one such example of
pairwise correlations (corresponding to the terrorist network
in Table 2).

Experimental results across all of the data sets used in this
paper indicate that all five algorithms tend to be strongly
correlated (according to K-min distance) in their top 10

rankings. However, there is some variation depending on the
topology of the graph and whether the graph is directed or
not. For example, for both directed and undirected graphs,
PRankP and WKPaths tend to very highly correlated (of-
ten within 0.9 to 0.8 K-Min distance from another) while
MarkovC tends to be the most dissimilar from the others
(usually no more than 0.5 to 0.7). For undirected graphs,
HITSP tends to be highly correlated with PRankP and WK-
Paths (usually within 0.9 to 0.8) but for directed graphs
the correlation is often much weaker (usually within 0.8 to
0.6). KSMarkov appears to be slightly less correlated with
PRankP, WKPaths, and HITSP and marginally more cor-
related with MarkovC than the others (although KSMarkov
is different in Table 6 in this respect).

10. CONCLUSIONS
In this paper we provided a first step in addressing the

problem of answering “relative importance” queries on graph
data sets. We described a general framework that can be
used to estimate the importance of nodes in a graph rela-
tive to a root set R and proposed several new algorithms
within this framework based on both graph-theoretic no-
tions of weighted paths and Markov chain models. In ongo-
ing work, we are addressing a number of limitations we have
identified—for example, how weighted edges can be incorpo-

274



www.manaraa.com

Table 4: Importance rankings for the coauthorship network with respect to the Tom Mitchell node.

Rank PRankP HITSP WKPaths KSMarkov
1 Mitchell 0.342 Mitchell 0.322 Mitchell 0.005 McCallum 0.070
2 Freitag 0.054 Thrun 0.038 Thrun 0.004 Freitag 0.067
3 McCallum 0.054 McCallum 0.038 Freitag 0.003 Mitchell 0.067
4 Thrun 0.051 Freitag 0.035 McCallum 0.003 Thrun 0.064
5 Joachims 0.050 Nigam 0.034 Nigam 0.002 Joachims 0.061
6 Armstrong 0.046 Blum 0.032 Joachims 0.002 Armstrong 0.054
7 Nigam 0.040 Joachims 0.031 Armstrong 0.002 Nigam 0.046
8 Blum 0.036 Armstrong 0.031 Blum 0.002 Blum 0.041
9 O’Sullivan 0.035 O’Sullivan 0.030 O’Sullivan 0.002 O’Sullivan 0.038
10 Seymore 0.011 Seymore 0.006 Caruana 0.001 Seymore 0.019

Table 5: Importance rankings for the coauthorship network with respect to nodes Brin, Page, and Kleinberg.

Rank PRankP HITSP WKPaths KSMarkov
1: Brin 0.2014 Brin 0.1119 Kleinberg 0.0023 Brin 0.1045
2: Page 0.1352 Kleinberg 0.1107 Brin 0.0019 Motwani 0.0627
3: Kleinberg 0.1137 Page 0.1087 Motwani 0.0017 Ullman 0.0536
4: Motwani 0.0474 Motwani 0.0184 Raghavan 0.0016 Silverstein 0.0467
5: Ullman 0.0429 Raghavan 0.0147 Page 0.0014 Page 0.0394
6: Silverstein 0.0392 Ullman 0.0136 Silverstein 0.0014 Kleinberg 0.0194
7: Raghavan 0.0111 Silverstein 0.0119 Ullman 0.0014 Raghavan 0.0138
8: Lynch 0.0086 Williamson 0.0113 Williamson 0.0012 Zhang 0.0109
9: Kedem 0.0086 Papadimitriou 0.0110 Vempala 0.0012 Guibas 0.0106
10: Williamson 0.0085 Lynch 0.0108 Indyk 0.0010 Robertson 0.0101

rated (for example, for authors who author multiple papers
with another author) and how methods such as Markov Cen-
trality be scaled up computationally to very large graphs.
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